skip to main content


Search for: All records

Creators/Authors contains: "Jayaraman, Bargav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, ϵ, about how much information is leaked by a mechanism. When used in privacy-preserving machine learning, the goal is typically to limit what can be inferred from the model about individual training records. However, the calibration of the privacy budget is not well understood. Implementations of privacy-preserving machine learning often select large values of ϵ in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, relaxed definitions of differential privacy are often used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is no way to obtain privacy for free---relaxed definitions of differential privacy that reduce the amount of noise needed to improve utility also increase the measured privacy leakage. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs for complex learning tasks: settings that provide limited accuracy loss provide little effective privacy, and settings that provide strong privacy result in useless models. 
    more » « less
  2. Abstract We study membership inference in settings where assumptions commonly used in previous research are relaxed. First, we consider cases where only a small fraction of the candidate pool targeted by the adversary are members and develop a PPV-based metric suitable for this setting. This skewed prior setting is more realistic than the balanced prior setting typically considered. Second, we consider adversaries that select inference thresholds according to their attack goals, such as identifying as many members as possible with a given false positive tolerance. We develop a threshold selection designed for achieving particular attack goals. Since previous inference attacks fail in imbalanced prior settings, we develop new inference attacks based on the intuition that inputs corresponding to training set members will be near a local minimum in the loss function. An attack that combines this with thresholds on the per-instance loss can achieve high PPV even in settings where other attacks are ineffective. 
    more » « less